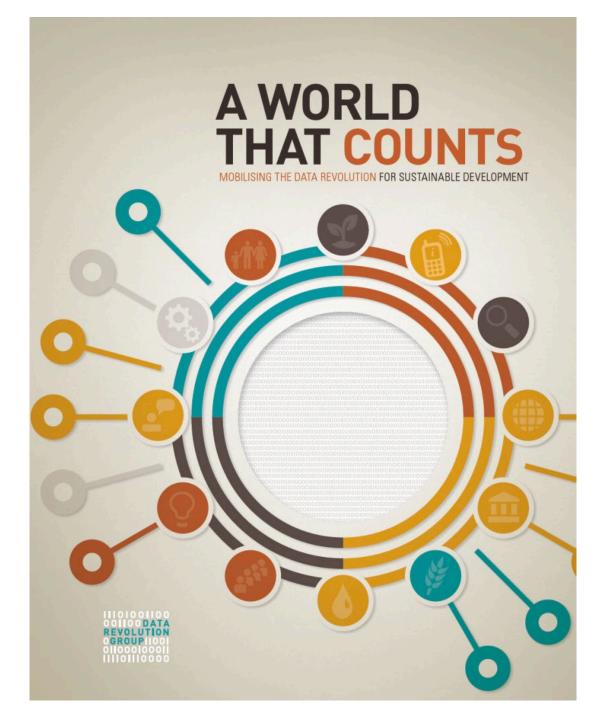


Introduction to the use of Big Data for Official Statistics

Ronald Jansen

Assistant Director
Chief of Data Innovation and Capacity Branch
United Nations Statistics Division

- I. Background
 - a) Data Revolution
 - b) National US Big Data Group
 - c) Regional UNECE Big Data Group
 - d) Global UN GWG Big Data Group
- II. Examples of Use Cases
- III. Data Science, New Skills and Partnerships
- IV. Program of the Symposium

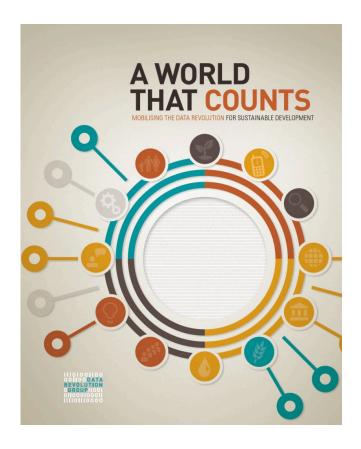


2014 – Data Revolution report

2014 – Creation of
US Big Data group
UNECE Big Data group
UN GWG Big Data group

2014-19 International Conferences on Big Data for Official Statistics in China, UAE, Ireland, Colombia and Rwanda

2018 – UN Global Platform



2014

End of MDGs

Independent Expert Advisory Group (IEAG) gave recommendations to the UN Secretary General

- Co-Chairs Enrico Giovannini and Robin Li,
 CEO of Baidu
- 23 members half from Statistics, half from outside Statistics
- Amina Mohamed, current Deputy Secretary General, and Thomas Gass, currently leading the Bern Network for Financing for Statistics, were representing the UN

2014 – Data revolution report – action items:

- develop **legal**, **technical**, **privacy**, **geospatial** and **statistical standards** to facilitate openness and exchange of information;
- (ii) share technology and innovation for the common good; and create a "SDGs data lab";
- (iii) scale investments for statistical capacity development and technology transfer;
- (iv) mobilize global action through a World Data Forum with **global public-private partnerships** for data sharing;

2019 – What have we delivered?

- (i) GWG to develop legal, technical, privacy, geospatial and statistical standards for use of Big Data;
- (ii) UN Global Platform to share technology and innovation as a "SDGs data lab";
- (iii) Bern Network to scale investments for statistical capacity development and technology transfer;
- (iv) The 3rd World Data Forum will take place in October 2020 in Bern

US Big Data Group (2014)

Big Data Public Working Group of the National Institute of Standards and Technology -> really Big Data

- Fraud detection in the financial industries (banking, securities & investments, insurance)
- Persistent surveillance (object identification and tracking from high-resolution imagery or full motion video) by the US Department of Defense
- Genomic measurements
- Particle physics: analysis of Large Hadron Collider (LHC) data (Discovery of Higgs particle)
- Climate studies using the Community Earth System Model.

- Under the umbrella of the Conference of European Statisticians the UNECE Big Data Working Group developed guidance on several issues, including
 - Classification for Types of Big Data
 - Big Data Quality
 Framework

Classification of Type of Big Data

Social Networks (human-sourced information)

1100. Social Networks: Facebook, Twitter, Tumblr etc.

1200. Blogs and comments

1300. Personal documents

1400. Pictures: Instagram, Flickr, Picasa etc.

1500. Videos: Youtube etc.

1600. Internet searches

1700. Mobile data content: text messages

1800. User-generated maps

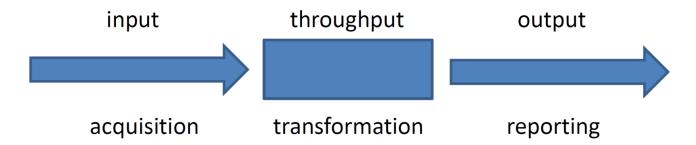
1900. E-Mail

Classification of Type of Big Data

Business systems (process-mediated data)

- 21. Data produced by Public Agencies 2110. Medical records
- 22. Data produced by Businesses
 - 2210. Commercial transactions
 - 2220. Banking/stock records
 - 2230. E-commerce
 - 2240. Credit cards

Internet of Things (machine-generated data)


Classification of Type of Big Data

```
311. Fixed sensors
```

- 3111. Home automation
- 3112. Weather/pollution sensors
- 3113. Traffic sensors/webcam
- 3114. Scientific sensors
- 3115. Security/surveillance videos/images
- 312. Mobile sensors (tracking)
 - 3121. Mobile phone location
 - 3122. Cars
 - 3123. Satellite images
- 32. Data from computer systems
 - 3210. Logs
 - 3220. Web logs

Big Data Quality Framework

Business process

Framework

Structured view of quality for each phase

Big Data Quality Framework

Input

- Discovery stage
 - Dataset not required
 - Hyperdimension: Source and Metadata
- Acquisition
 - Dataset required
 - Hyperdimension: Data
- Approach
 - Factors to consider
 - Example of quality indicators

UN Global Working Group (GWG) on Big Data for Official Statistics

- Created in March 2014 by the UN Statistical Commission
- Mandated to give direction to the use of Big Data for Official Statistics
- Consisting of 28 countries and 16 international organizations

UN GWG on Big Data for Official Statistics

Global Conferences

- ✓ Beijing, China, 2014
- ✓ Abu Dhabi, UAE, 2015
- ✓ Dublin, Ireland, 2016
- ✓ Bogota, Colombia, 2017
- ✓ Kigali, Rwanda, 2019

2014-19 International Conferences on Big Data for Official Statistics in China, UAE, Ireland, Colombia and Rwanda

Themes

 Potential of Big Data (China), Big Data and SDGs (UAE), Public-private partnerships (Ireland), Data collaboratives and trusted data (Colombia), Working together, learning together (Rwanda)

Sessions

Earth Observations, Mobile Phone data, Scanner data, Capacity development

Outcomes

Reports to UNSC, Bogota declaration, Kigali declaration

2018 – UN Global Platform – Alpha version made available by ONS, UK

- O Collaborative digital environment for trusted data, trusted methods, trusted partners and trusted learning
- O Global data sets Automatic Identification System (AIS), Satellite data,
- Global services Trusted Methods Library/Service, Earth Observation
 Service, Location Analytics Service, Developers Service

UN GWG and its Task Teams: Intergovernmental body

UN Global Platform: Collaborative environment

Slide 20

UN Global Platform: System of Hubs

- ✓ Hangzhou, China NBS of China
- ✓ Dubai, UAE FCSA, UAE
- ✓ London, UK non-government (supported by Data Science Campus/ONS)
- ✓ Rio de Janeiro, Brazil National School of Statistical Sciences/ IBGE
- ✓ Kigali, Rwanda NISR, Rwanda and UNECA

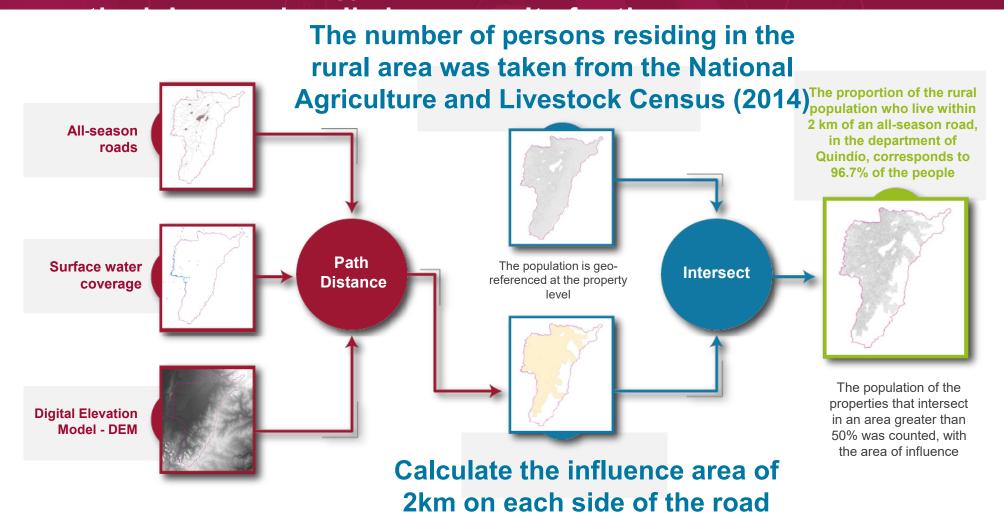
Examples

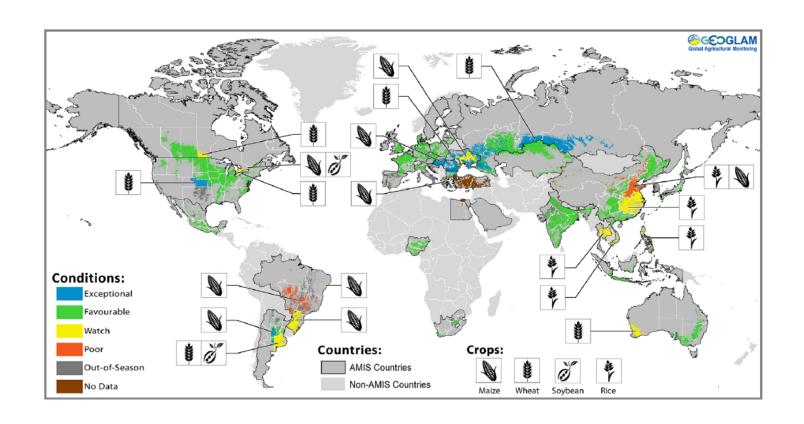
Use Cases of Big Data

Distance to all season road (SDG 9.1.1) with Open Street Map and Satellite data

New GIS methodology for measuring RAI

In 2016 ReCAP and the World Bank (the RAI custodian), coordinated to develop a new methodology that used geo-spatial data to measure the RAI, and trialled it in eight countries in Africa and Asia. This included using three layers of geo-spatial information to define the RAI:


- Rural Population
- Road Network Location
- Road Condition (all-season or not)



Overview methodology* Pilot test of the

Agricultural crop production (SDG 2.4.1) with Satellite data

- GeoGLAM Crop Monitoring.
- EO in Service of the 2030 Agenda for Sustainable Development. Anderson *et al.* 2017

United Nations Statistics Division 21/10/2019 24

GOAL 6

"Ensure
availability
and
sustainable
management
of water and
sanitation
for all"

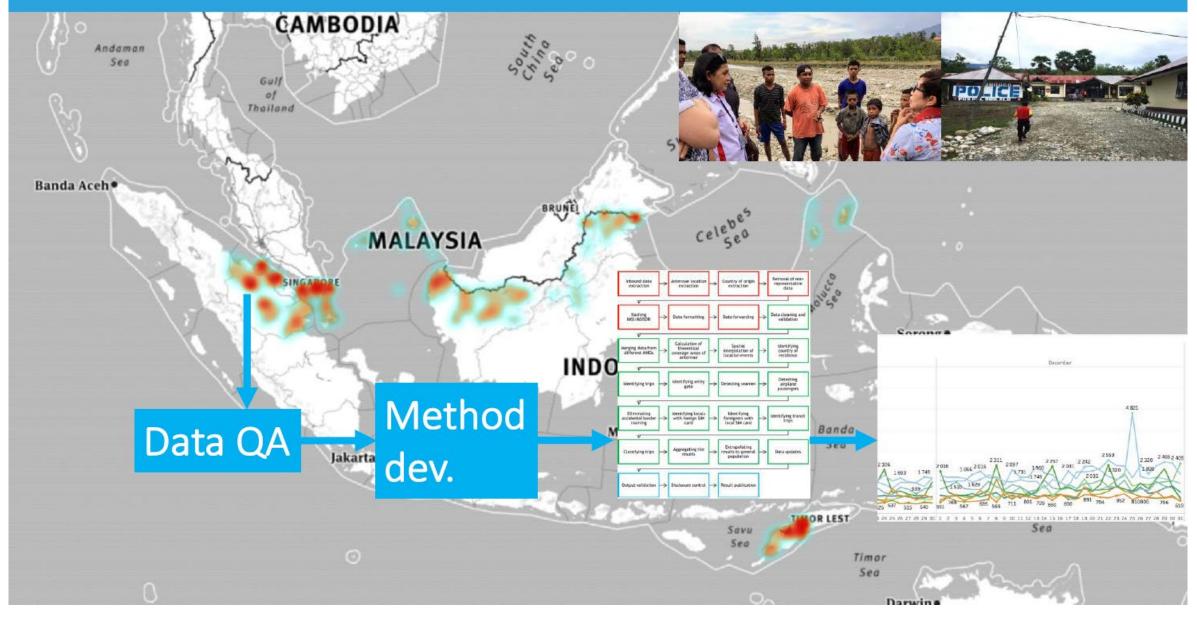
TARGET 6.6

"By 2020, protect and restore water-related ecosystems, including mountains, forests wetlands, rivers, aquifers and lakes."

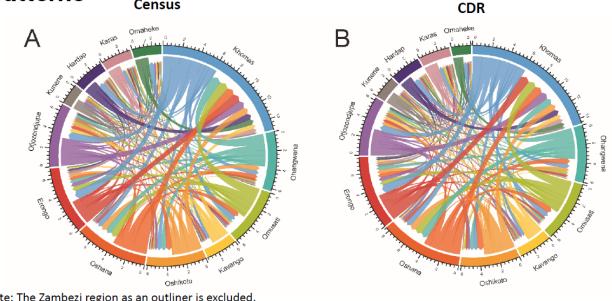
INDICATOR 6.6.1

Percentage of change in the extent of water-related ecosystems over time

% of change in wetlands extent over time can be measured globally by earth observation based monitoring of wetlands looking at land-use, land-cover, vegetation cover, inundation frequency, biodiversity


Human mobility (SDG 8.9.1 and 10.7.1) and population densities with Mobile Phone data

- 34 Province → 514 Kabupaten
- 256 Million People
- How Many Domestic Tourism?
- How Much Their Expenditure ? For what
- Where they come from, where they go


 Mode of Transport?

Case: Cross-Border Tourism in Indonesia

Human mobility (SDG 8.9.1 and 10.7.1) and population densities with Mobile Phone data

CDRs and census data show very similar migration patterns Census

Note: The Zambezi region as an outliner is excluded.

Southampton world programmer.org

United Nations Statistics Division 21/10/2019 28

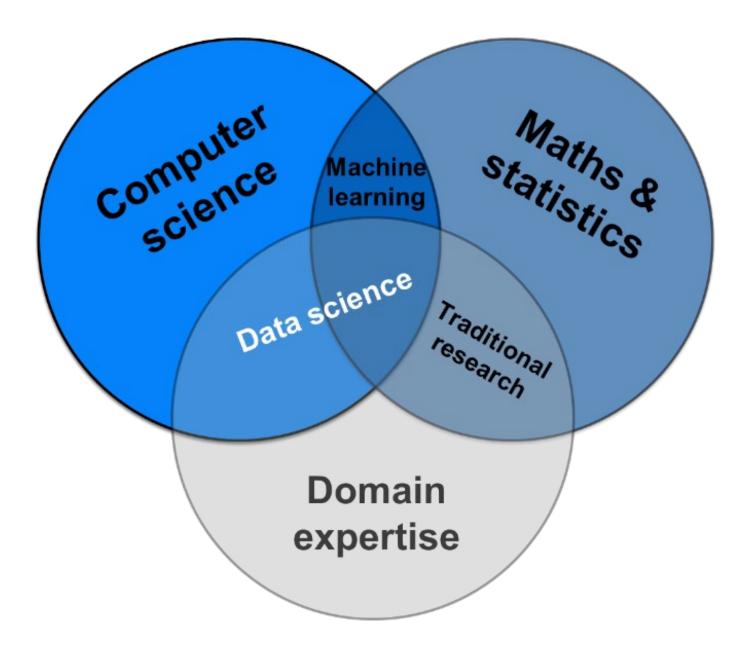
Shipping Automated Information System (AIS) data

- Marine and Coastguard Agency, ORBCOMM, Global Platform
- Ship tracking data
- Port traffic frequency
- Time in port
- Real time

Sunday 25 December 2016

Data Science Campus

datasciencecampus.ons.gov.uk | datasciencecampus@ons.gov.uk


@DataSciCampus

Transport statistics, CO2 emissions and illegal fishing with AIS data

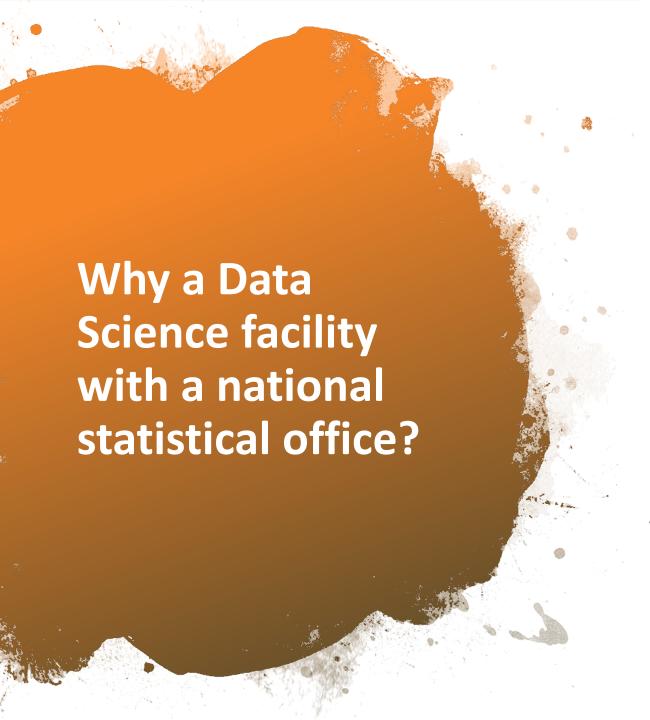
29

21/10/2019

United Nations Statistics Division Data Science, New Skills and Partnerships

United Nations Statistics Division 21/10/2019 30

Data Science for Official Statistics


The mission of the ONS Data Science Campus is to work at the frontier of data science and Artificial Intelligence — building skills and applying tools, methods and practices — to create new understanding and improve decision-making for public good. It defines data science as "applying the tools, methods and practices of the digital and data age to create new understanding and improve decision-making".

- Machine learning to identify agricultural crops from satellite images – need for ground truthing
- Machine learning to estimate extent of fresh water surfaces from satellite images – need for ground truthing
- Al to recognize patterns of shipping routes using AIS data for measuring transport and illegal fishing
- Al to recognize patterns of human mobility using mobile positioning data to estimate commuting, domestic tourism or internal migration

- to harness and exploit large digital datasets and data streams,
- to develop and test algorithms, which lead to statistics and insights,
- to develop new skills in the task force of the statistical office, as well as attracts partner communities to work with the statistical office.

- <u>Partnerships with</u> Private sector, academia, research institutes and civil society
- Achieve the promise of timely, more frequent and more granular data to inform and achieve the sustainable development goals and targets.

UN GWG and Partnerships

- Extending partnerships to private sector, academia, civil society, donor community:
- Positium, Flowminder, OneSoil,
 Sinergise, Azavea, Planet, Telenor, GSMA,
 Algorithmia, Esri, AWS, Google, Microsoft,
 Alibaba, Global Partnership for
 Sustainable Development Data,
 Sustainable Development Solutions
 Network

Program

Wednesday - morning

- UN Global Working Group and its Task Teams
- Introduction to the Big Data Centre

Wednesday - afternoon

Use of Satellite data for official statistics

Thursday - morning

- UN Global Platform
- Use of Big Data for SDG indicator

Thursday - afternoon

Use of Mobile Phone data for official statistics

Program

Friday - morning

- Use of Big Data for Economic Statistics
- Use of Big Data for Official Statistics

Friday - afternoon

- Quality Assurance while using Big Data
- Round Table on way forward for using Big Data in Asia and the Pacific

Thank you

